Dynamic mesh refinement for discrete models of jet electro-hydrodynamics
نویسندگان
چکیده
Nowadays, several models of unidimensional fluid jets exploit discrete element methods. In some cases, as for models aiming at describing the electrospinning nanofabrication process of polymer fibers, discrete element methods suffer a non-constant resolution of the jet representation. We develop a dynamic meshrefinement method for the numerical study of the electro-hydrodynamic behavior of charged jets using vailable online xxx
منابع مشابه
Temporal and Angular Properties of GRB Jets Emerging from Massive Stars
We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. We carry out a series of high-resolution simulations of a jet propagating through a stellar envelope in 2D cylindrical coordinates using the FLASH relativistic hydrodynamics module. For the first time, simulations are carried out using an adaptive mesh...
متن کاملTowards an Efficient, High-Fidelity Methodology for Liquid Jet Atomization Computations
The aim of this work is to show how adaptive mesh refinement and Lagrangian tracking can be integrated to enable high-fidelity computations of jet atomization and dispersion for industrially relevant configurations. In its present form, the Coupled Level Set and Volume of Fluid (CLSVOF) method for multiphase flow calculations is embedded in a dynamic, block-structured Adaptive Mesh Refinement (...
متن کاملar X iv : a st ro - p h / 98 07 12 1 v 1 1 3 Ju l 1 99 8 COSMOLOGICAL ADAPTIVE MESH REFINEMENT
We describe a grid-based numerical method for 3D hydrody-namic cosmological simulations which is adaptive in space and time and combines the best features of higher order–accurate Godunov schemes for Eulerian hydrodynamics with adaptive particle–mesh methods for collision-less particles. The basis for our method is the structured adaptive mesh refinement (AMR) algorithm of Berger & Collela (198...
متن کاملParallel Two-Dimensional Unstructured Anisotropic Delaunay Mesh Generation for Aerospace Applications
PARALLEL TWO-DIMENSIONAL UNSTRUCTURED ANISOTROPIC DELAUNAY MESH GENERATION FOR AEROSPACE APPLICATIONS Juliette Kelly Pardue Old Dominion University, 2015 Director: Dr. Andrey Chernikov A bottom-up approach to parallel anisotropic mesh generation is presented by building a mesh generator from the principles of point-insertion, triangulation, and Delaunay refinement. Applications focusing on high...
متن کاملThe Dynamics and Afterglow Radiation of Gamma-ray Bursts: a Numerical Approach
Direct multi-dimensional numerical simulation is the most reliable approach for calculating the fluid dynamics and observational signatures of relativistic jets in gamma-ray bursts (GRBs). We present a two-dimensional relativistic hydrodynamic simulation of a GRB outflow during the afterglow phase, which uses the fifth-order weighted essentially non-oscillatory scheme and adaptive mesh refineme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Science
دوره 17 شماره
صفحات -
تاریخ انتشار 2016